31 research outputs found

    Lymphangiogenesis and angiogenesis during human fetal pancreas development

    Get PDF
    Background: The complex endocrine and exocrine functionality of the human pancreas depends on an efficient fluid transport through the blood and the lymphatic vascular systems. The lymphatic vasculature has key roles in the physiology of the pancreas and in regulating the immune response, both important for developing successful transplantation and cell-replacement therapies to treat diabetes. However, little is known about how the lymphatic and blood systems develop in humans. Here, we investigated the establishment of these two vascular systems in human pancreas organogenesis in order to understand neovascularization in the context of emerging regenerative therapies. Methods: We examined angiogenesis and lymphangiogenesis during human pancreas development between 9 and 22 weeks of gestation (W9-W22) by immunohistochemistry. Results: As early as W9, the peri-pancreatic mesenchyme was populated by CD31-expressing blood vessels as well as LYVE1- and PDPN-expressing lymphatic vessels. The appearance of smooth muscle cell-coated blood vessels in the intra-pancreatic mesenchyme occurred only several weeks later and from W14.5 onwards the islets of Langerhans also became heavily irrigated by blood vessels. In contrast to blood vessels, LYVE1- and PDPN-expressing lymphatic vessels were restricted to the peri-pancreatic mesenchyme until later in development (W14.5-W17), and some of these invading lymphatic vessels contained smooth muscle cells at W17. Interestingly, between W11-W22, most large caliber lymphatic vessels were lined with a characteristic, discontinuous, collagen type IV-rich basement membrane. Whilst lymphatic vessels did not directly intrude the islets of Langerhans, three-dimensional reconstruction revealed that they were present in the vicinity of islets of Langerhans between W17-W22. Conclusion: Our data suggest that the blood and lymphatic machinery in the human pancreas is in place to support endocrine function from W17-W22 onwards. Our study provides the first systematic assessment of the progression of lymphangiogenesis during human pancreatic development

    On the development of extragonadal and gonadal human germ cells

    Get PDF
    Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where 'adrenal' and 'ovarian' germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human 'adrenal' germ cells until W22. By contrast, 'ovarian' germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species- specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development

    Comparative analysis of naive, primed and ground state pluripotency in mouse embryonic stem cells originating from the same genetic background

    Get PDF
    Mouse embryonic stem cells (mESCs) exist in a naive, primed and ground state of pluripotency. While comparative analyses of these pluripotency states have been reported, the mESCs utilized originated from various genetic backgrounds and were derived in different laboratories. mESC derivation in conventional LIF + serum culture conditions is strain dependent, with different genetic backgrounds potentially affecting subsequent stem cell characteristics. In the present study, we performed a comprehensive characterization of naive, primed and ground state mESCs originating from the same genetic background within our laboratory, by comparing their transcriptional profiles. We showed unique transcriptional profiles for naive, primed and ground state mESCs. While naive and ground state mESCs have more similar but not identical profiles, primed state mESCs show a very distinct profile. We further demonstrate that the differentiation propensity of mESCs to specific germ layers is highly dependent on their respective state of pluripotency

    Development of the follicular basement membrane during human gametogenesis and early folliculogenesis

    Get PDF
    Background: In society, there is a clear need to improve the success rate of techniques to restore fertility. Therefore a deeper knowledge of the dynamics of the complex molecular environment that regulates human gametogenesis and (early) folliculogenesis in vivo is necessary. Here, we have studied these processes focusing on the formation of the follicular basement membrane (BM) in vivo. Results: The distribution of the main components of the extracellular matrix (ECM) collagen IV, laminin and fibronectin by week 10 of gestation (W10) in the ovarian cortex revealed the existence of ovarian cords and of a distinct mesenchymal compartment, resembling the organization in the male gonads. By W17, the first primordial follicles were assembled individually in that (cortical) mesenchymal compartment and were already encapsulated by a BM of collagen IV and laminin, but not fibronectin. In adults, in the primary and secondary follicles, collagen IV, laminin and to a lesser extent fibronectin were prominent in the follicular BM. Conclusions: The ECM-molecular niche compartimentalizes the female gonads from the time of germ cell colonization until adulthood. This knowledge may contribute to improve methods to recreate the environment needed for successful folliculogenesis in vitro and that would benefit a large number of infertility patients

    BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells

    Get PDF
    Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation

    Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential.

    Get PDF
    Generating an unlimited source of human insulin-producing cells is a prerequisite to advance β cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi), express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC), and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential

    Determinants of delays in travelling to an emergency obstetric care facility in Herat, Afghanistan: an analysis of cross-sectional survey data and spatial modelling.

    Get PDF
    BACKGROUND: Women's delays in reaching emergency obstetric care (EmOC) facilities contribute to high maternal and perinatal mortality and morbidity in low-income countries, yet few studies have quantified travel times to EmOC and examined delays systematically. We defined a delay as the difference between a woman's travel time to EmOC and the optimal travel time under the best case scenario. The objectives were to model travel times to EmOC and identify factors explaining delays. i.e., the difference between empirical and modelled travel times. METHODS: A cost-distance approach in a raster-based geographic information system (GIS) was used for modelling travel times. Empirical data were obtained during a cross-sectional survey among women admitted in a life-threatening condition to the maternity ward of Herat Regional Hospital in Afghanistan from 2007 to 2008. Multivariable linear regression was used to identify the determinants of the log of delay. RESULTS: Amongst 402 women, 82 (20%) had no delay. The median modelled travel time, reported travel time, and delay were 1.0 hour [Q1-Q3: 0.6, 2.2], 3.6 hours [Q1-Q3: 1.0, 12.0], and 2.0 hours [Q1-Q3: 0.1, 9.2], respectively. The adjusted ratio (AR) of a delay of the "one-referral" group to the "self-referral" group was 4.9 [95% confidence interval (CI): 3.8-6.3]. Difficulties obtaining transportation explained some delay [AR 2.1 compared to "no difficulty"; 95% CI: 1.5-3.1]. A husband's very large social network (> = 5 people) doubled a delay [95% CI: 1.1-3.7] compared to a moderate (3-4 people) network. Women with severe infections had a delay 2.6 times longer than those with postpartum haemorrhage (PPH) [95% CI: 1.4-4.9]. CONCLUSIONS: Delays were mostly explained by the number of health facilities visited. A husband's large social network contributed to a delay. A complication with dramatic symptoms (e.g. PPH) shortened a delay while complications with less-alarming symptoms (e.g. severe infection) prolonged it. In-depth investigations are needed to clarify whether time is spent appropriately at lower-level facilities. Community members need to be sensitised to the signs and symptoms of obstetric complications and the urgency associated with them. Health-enhancing behaviours such as birth plans should be promoted in communities

    Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis

    No full text
    The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy

    Parental haplotype-specific single-cell transcriptomics reveal incomplete epigenetic reprogramming in human female germ cells

    Get PDF
    In contrast to mouse, human female germ cells develop asynchronously. Germ cells transition to meiosis, erase genomic imprints, and reactivate the X chromosome. It is unknown if these events all appear asynchronously, and how they relate to each other. Here we combine exome sequencing of human fetal and maternal tissues with single-cell RNA-sequencing of five donors. We reconstruct full parental haplotypes and quantify changes in parental allele-specific expression, genome-wide. First we distinguish primordial germ cells (PGC), pre-meiotic, and meiotic transcriptional stages. Next we demonstrate that germ cells from various stages monoallelically express imprinted genes and confirm this by methylation patterns. Finally, we show that roughly 30% of the PGCs are still reactivating their inactive X chromosome and that this is related to transcriptional stage rather than fetal age. Altogether, we uncover the complexity and cell-to-cell heterogeneity of transcriptional and epigenetic remodeling in female human germ cells
    corecore